首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6363篇
  免费   41篇
  国内免费   50篇
工业技术   6454篇
  2024年   2篇
  2023年   32篇
  2022年   53篇
  2021年   105篇
  2020年   99篇
  2019年   83篇
  2018年   70篇
  2017年   172篇
  2016年   152篇
  2015年   264篇
  2014年   409篇
  2013年   467篇
  2012年   242篇
  2011年   505篇
  2010年   408篇
  2009年   399篇
  2008年   378篇
  2007年   397篇
  2006年   347篇
  2005年   269篇
  2004年   258篇
  2003年   223篇
  2002年   195篇
  2001年   119篇
  2000年   109篇
  1999年   110篇
  1998年   98篇
  1997年   84篇
  1996年   88篇
  1995年   69篇
  1994年   68篇
  1993年   43篇
  1992年   28篇
  1991年   18篇
  1990年   11篇
  1989年   9篇
  1988年   14篇
  1987年   8篇
  1986年   3篇
  1985年   7篇
  1984年   9篇
  1983年   15篇
  1982年   13篇
  1980年   2篇
排序方式: 共有6454条查询结果,搜索用时 15 毫秒
1.
This study focuses on the chemistry, thermal stability, and electrical conductivity of low/intermediate pyrolysis temperature (700?900 °C) polysiloxane derived ceramics. These ceramics were modified with additional carbon derived from divinylbenzene (DVB) added to the precursor. Their electrical properties were investigated for potential uses in micro-electrical mechanical systems (MEMS) and anodes for lithium batteries. The microstructure and chemical composition was investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS); thermogravimetric analysis (TGA) provided insight into the thermal stability; and electrochemical impedance spectroscopy (EIS) into the electrical properties of the material. The increase of pyrolysis temperature and carbon content lead to an enhancement of the electrical conductivity, higher than previously reported values for intermediate pyrolysis temperature SiOC polymer derived ceramics. A limit of the amount of DVB that can be added to PHMS to produce a hybrid precursor has also been obtained.  相似文献   
2.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
3.
A new, experimental method based on air flow rate rather than current is presented to optimize operating parameters for the stacks and systems of proton exchange membrane fuel cells (PEMFCs) for maximizing their net power. This approach is illustrated for a commercial 18 kW PEMFC module. The impact of contamination pressure drop across the cathode air filter is also investigated on the compressor behavior. It is further shown that a 4V reduction in the compressor voltage reduces its power consumption by 9.1%. Using the 3D graphs of the power-pressure-flow data, it is found that the stack pressure of 180 kPaa is superior to the higher tested pressures as it enhances the net power by 7.0 and 13.7% at different conditions. Application of the present study will lead to the development of PEMFCs with higher power output by optimizing stack pressure, stoichiometry and air flow to properly deliver the system design specifications.  相似文献   
4.
This study investigates the preparation of polyetherimide (PEI) – LaNi5 composites films for hydrogen storage. Prior to the polymer addition, LaNi5 was ball-milled at different conditions (250, 350, and 450 RPM) and annealed at 500 °C for 1 h under vacuum. The composites were produced with BM-LaNi5-350 (PEI/LaNi5-350) and annealed BM-LaNi5-350 (PEI/LaNi5-350-TT). Membranes were successfully produced through solvent casting assisted by an ultrasonic bath. The particles dispersion and the film morphology did not change after hydrogenation cycles. In the H2 sorption experiments at 43 °C and 20 bar, the films stored H2 without incubation time; both samples reached a capacity of ~0.6 wt%. The H2 sorption kinetics of PEI/LaNi5-350 was comparable to that of BM-LaNi5-350, whereas PEI/LaNi5-350-TT presented significantly slower kinetics. LaNi5 oxidation was hindered by PEI, showing that it can be explored to improve metal hydrides air resistance. The results demonstrated that PEI films filled with LaNi5 are promising materials for hydrogen storage.  相似文献   
5.
The use of hydrogen as a fuel is increasing exponentially, and the most economical way to store and transport hydrogen for fuel use is as a high-pressure gas. Polymers are widely used for hydrogen distribution and storage systems because they are chemically inert towards hydrogen. However, when exposed to high-pressure hydrogen, some hydrogen diffuses through polymers and occupies the preexisting cavities inside the material. Upon depressurization, the hydrogen trapped inside polymer cavities can cause blistering or cracking by expanding these cavities. A continuum mechanics–based deformation model was deployed to predict the stress distribution and damage propagation while the polymer undergoes depressurization after high-pressure hydrogen exposure. The effects of cavity size, cavity location, and pressure inside the cavity on damage initiation and evolution inside the polymer were studied. The stress and damage evolution in the presence of multiple cavities was also studied, because interaction among cavities alters the damage and stress field. It was found that all these factors significantly change the stress state in the polymer, resulting in different paths for damage propagation. The effect of adding carbon black filler particles and plasticizer on the damage was also studied. It was found that damage tolerance of the polymer increases drastically with the addition of carbon black fillers, but decreases with the addition of the plasticizer.  相似文献   
6.
Zirconia-alumina multiphase ceramic fibers with 80 wt% (Z80A20 fiber) and 10 wt% (Z10A90 fiber) proportions of zirconia were prepared via melt-spinning and calcination from solid ceramic precursors synthesized by controllable hydrolysis of metallorganics. The zirconia-alumina multiphase fibers had a diameter of about 10 µm and were evenly distributed with alumina and zirconia grains. The Z80A20 and Z10A90 ceramic fibers had the highest filament tensile strength of 1.78 GPa and 1.87 GPa, respectively, with a peak value of 2.62 GPa and 2.71 GPa. The Z80A20 ceramic fiber has superior thermal stability compared to the Z10A90 ceramic fiber and a higher rate of filament strength retention due to the stability in grain size. After heat treatment at 1100 °C, 1200 °C, and 1300 °C for 1 h respectively, the filament tensile strength retention rate of Z80A20 ceramic fibers was 87 %, 80 %, and 40 %. While Z10A90 ceramic fiber was fragile after being heated at 1300 °C. The results showed that the high zirconia content facilitated the fiber's thermal stability.  相似文献   
7.
A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.  相似文献   
8.
《能源学会志》2020,93(3):934-952
Recently, commodity plastics have been shown to be a promising additive to improve the fuel properties of biodiesel, which offers a promising solution to the plastic pandemic. As many environmental and societal issues arise from plastic pollution, repurposing technologies are paramount in order to meet Sustainable Development Goals (SDG). A potentially cost-effective approach can be achieved by using waste plastics as biodiesel additives – resonating to the expression ‘to kill two birds with one stone’. However, given the novelty of such investigation, current optimization studies show varying results on the ideal plastic-to-biodiesel ratio as well as the reaction parameters. The difficulty in determining the exact optimum values is due to the many variations of biodiesel properties and the complex behaviour of plastic polymers, which are seldom discussed in review papers. Hence, to address the literature gap, this paper offers the necessary fundamentals of biodiesel and plastic dissolution; facilitating future researches to advance the application of plastics as viable biodiesel additives. Accordingly, the topics covered include the fuel and solvent properties of biodiesel related to its' composition, as well as the polymer dissolution phenomena. Finally, as the focal aim of the paper, a synopsis on the recent advancement of plastic-added biodiesel is presented; in particular, those that are related to the blend characteristics, fuel properties, combustion quality, and environmental impact.  相似文献   
9.
Direct methanol fuel cell (DMFC) with near-zero pollution emission, large energy density, and low operating temperature provides a beneficial and sustainable way for alleviating fossil energy crisis and ecological pollution issues. In this work, a systematic protocol was explored for the design of novel electrocatalyst based on PEDOT-PSS coated amino-functionalized SiO2 microspheres (SiO2–NH2@PEDOT-PSS) support, and then Pt nano-particles (NPs) were uniformly anchored for the anodic process of DMFCs. Characterization techniques, e.g. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the dispersity and homogeneity of Pt NPs on the surface of SiO2–NH2@PEDOT-PSS were markedly improved due to PEDOT-PSS modification, and the distribution of Pt NPs was in a smaller mean-size ~2.8 nm. Subsequently, X-ray photoelectron spectroscopy (XPS) study exposed fast electron shift phenomenon from SiO2–NH2@PEDOT-PSS support to Pt NPs in the catalyst. The various electrochemical tests such as cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS) revealed that the prepared Pt/SiO2–NH2@PEDOT-PSS catalyst presented higher electrocatalytic efficacy, excellent durability with improved CO-tolerance towards methanol oxidation reaction rather than commercial Pt/C catalyst. These distinctive physical and chemical features of designed catalyst raise the spirit to design an efficient electrocatalyst based on Pt/SiO2–NH2@PEDOT-PSS in DMFC applications.  相似文献   
10.
Traditionally, SiC components with complex shapes are very difficult or even impossible to fabricate. This paper aims to develop a new manufacturing process, combining selective laser sintering (SLS), cold isostatic pressing (CIP) and polymer infiltration pyrolysis (PIP), to manufacture complex silicon carbide parts and improve the mechanical properties of silicon carbide ceramic parts. The density and porosity of SiC/SiC composites were measured. Furthermore, the mechanical properties of the specimens with cold isostatic pressing and the specimens without cold isostatic pressing were compared. The bending strength of the specimens with cold isostatic pressing was 201?MPa, and the elastic modulus was 1.27?GPa. And, the bending strength of the specimens without cold isostatic pressing was 142?MPa, and the elastic modulus was 0.88?GPa. Increasing the density of SiC/SiC can enhance the mechanical properties of SiC/SiC composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号